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The flow past a cylinder in a rapidly rotating frame is described when the Rossby 
number Ro is O(J?&), where E is the Ekman number. Previous studies of the 
configuration have noticed the development of a singularity within the E! layer a t  
the rear stagnation point once the ratio R o / B  is larger than a critical value, and 
concluded that the boundary-layer flow is unsteady. In this paper a description of 
a steady boundary-layer flow for this parameter range is presented, showing the 
development of flow separation as R o / B  approaches a larger critical value. Details 
of the flow once the E! layer has separated from the cylinder are also described. 

1. Introduction 
In  this paper the flow of a rotating fluid of finite depth past an axial circular cylinder 
will be examined when the Ekman number E is small and the Rossby number Ro 
is O(&). Under these conditions Walker & Stewartson (1972) demonstrated that the 
E! layer on the surface of the cylinder is governed by a nonlinear equation and that 
the flow can separate from the obstacle when the ratio R o / B  is sufficiently large. The 
phenomenon of E! layer separation has also been studied in another configuration 
by Page (1982), but in the current case the development of separation is complicated 
by the presence of a singularity at the rear stagnation point of the cylinder. The 
presence of this singularity, which appears a t  a smaller value of R o / B  than that 
beyond which the flow separates, was noted by Walker & Stewartson (1972), who 
appealed to earlier work on the magnetohydrodynamic flow near a rear stagnation 
point (Leibovich 1 9 6 7 ~ ;  Buckmaster 1969,1971). These studies concluded that once 
the singularity forms the boundary layer splits into two distinct regions, an inner 
viscous layer and an outer inviscid layer, and that flow in the outer layer is necessarily 
unsteady. This is in some disagreement with the careful experiments of Boyer & 
Davies (1982), who did not notice any unsteadiness in this parameter regime. 

The flow past a circular cylinder when Ro 4 was first described by Barcilon 
(1970), who calculated the flow in the Stewartson and E! layers on the surface of 
the cylinder, appropriate as Ro/&-+O (Stewartson 1957), and examined some weakly 
nonlinear effects when R o / B  4 1. In  particular, Barcilon noted that nonlinear effects 
in the I6 layers are not significant when Ro = O @ ) ,  and therefore they will not be 
considered any further in this paper. Walker & Stewartson (1972) considered the 
nonlinear effects in the E! layer when Ro = O(&) in more detail and derived the 
governing equations, which show some similarity to the boundary-layer equations 
for a non-rotating fluid. These authors also recognized that the E! layer equation was 
essentially the same as that for the boundary-layer flow in an electrically conducting 
fluid with a strong radial magnetic field applied, as described by Leibovich (1967~)  
and Buckmaster (1969, 1971). From this work i t  was apparent that once the ratio 
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Roll& exceeded a critical value the flow developed a singularity at the rear stagnation 
point of the cylinder. For values of RoIB smaller than this critical value the 
boundary-layer flow was fully attached and could be described by a similarity 
solution near the rear stagnation point, but once the critical value was exceeded there 
was no suitable solution to the similarity equation. Using a technique drawn from 
classical boundary-layer theory, Buckmaster (1969) showed that the skin friction 
could not vanish on the surface of the cylinder until Roll& exceeded a larger critical 
value, twice that a t  which the singularity formed, and therefore boundary-layer 
separation in the classical sense did not necessarily accompany the singularity. 
Details of the attached flow between these two critical values were examined by 
Leibovich (19674, who concluded that the boundary-layer flow split into two layers. 
In the inner ‘viscous’ layer a similarity solution for the flow could be found, but the 
velocity at the outer edge of this region did not match that of the exterior flow (out- 
side of the boundary layer). To join these two regions together, Leibovich proposed 
that an outer ‘inviscid’ layer was present; however, since he could not find an 
appropriate description for this flow he concluded that it was necessarily unsteady. 
Buckmaster (1971) reexamined this layer using a different form of solution, guided 
by numerical results, but reached a similar conclusion. In this paper a suitable 
description for the steady flow in this outer layer is proposed and numerical solutions 
are presented to support this theory. 

The results described in $4 show how the boundary layer develops once the rear 
stagnation-point singularity has formed, and indicate that the transition from 
attached flow to separated flow is relatively smooth as RoIB is increased. The main 
features of the flow in this regime are similar to those proposed by Leibovich (1967a), 
and his description of the flow as undergoing ‘ separation without reversed flow ’ seems 
to be particularly appropriate. Between the inner viscous layer and the outer layer 
is a region of effectively irrotational stagnation-point flow, contained within the 
boundary layer, and, as R o l a  is increased, the size of this region also increases. 
Beyond Buckmaster’s (1969) critical value this region forms into a stagnant pool of 
fluid, surrounded by separated free shear layers, which distort the exterior flow. This 
description is in broad agreement with the experimental results presented in Boyer 
(1970) and Boyer & Davies (1982), although the stagnant region will contain some 
recirculation for finite values of E ,  and the free shear layers will develop instabilities 
in practice. 

layer flow are derived, and these are 
examined in $3  for the parameter range where the flow is fully attached and regular 
at the rear stagnation point. The more interesting case, where the rear stagnation 
point has developed a singularity but where the flow is still attached, is described 
in $4. Once the ,!& layer separates from the cylinder, and the exterior flow is 
distorted, the flow is more difficult to describe, but some proposals on the flow of this 
parameter regime are outlined in $5.  

In $2 the governing equations for the 

2. Formulation 
Consider an incompressible viscous fluid, of density p* and kinematic viscosity v*, 

which is confined between two infinite parallel plates, a distance d* apart, and where 
the entire configuration is rotating with a uniform angular velocity Q*L about an 
axis perpendicular to the plates. Relative to this rotating system, a circular cylinder 
of radius I* is placed in the fluid, with its axis parallel to &, and the fluid is forced 
past the cylinder by imposing a uniform flow with speed U* at infinity. Based on 
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these dimensional quantities, three important dimensionless parameters can be 

V* I* E = -  U* 
RO = - 

Q*d* ’ 

defined, namely 
Q*d*2’ ‘=- d*’ 

and these will be referred to as the Rossby number, Ekman number and scaled radius 
respectively. In  this paper both Ro and E are considered to be small, and particular 
emphasis is given to the case where Ro is O ( @ ) .  The scaled radius 1 is assumed to 
be of order unity. 

The most convenient coordinates to use in this configuration are cylindrical polars 
where the z* axis is coincident with the axis of the cylinder and the 8 axis is 
aligned with the imposed velocity at infinity. Dimensionless position and velocity, 
relative to the rotating frame, can then be defined as x = ( r , O , z )  = x*/d* and 
u = (u, v, w) = u*/U* respectively, where d* and U* have been chosen as appropriate 
length and velocity scales. The fluid is therefore contained in the region r > I with 
0 < z < 1 ,  and the velocity tends to u = (cos 8, -sin 8,O) as r -+ a0 . The equations of 
motion for a steady flow in these coordinates are 

R o ( u * V ) U + ~ ( R X U )  = -VP+EV2u,  (2 .2)  

v - u  = 0, (2 .3)  

where the dimensional pressure p* has been scaled to the reduced pressure 

p*-1 2P *Q*Zr*2 
P =  

p*U*Q*d* ’ 

after removing the centrifugal contribution (which does not affect the motion in a 
closed container). The boundary condition u = 0 is applied on all solid surfaces, 
namely r = 1 and z = 0 , l .  

For Ro 4 1 and E 4 1 the momentum equation (2 .2) ,  to lowest order, is the 
geostrophic equation 

2(R x u)  = -VP,  

and thus the motion in regions where (2 .5)  is a good approximation is both 
depth-independent and two-dimensional. Therefore the velocities u, v are functions 
of ( r , 8 )  only, and, using (2 .3) ,  w is zero to lowest order. To evaluate the velocities 
(u, v) it is necessary to examine higher-order terms in (2.2) ; this can be achieved most 
easily by eliminating P from the ( r ,  8)-components of that equation, leading to 

which governs the z-component of vorticity, 

to lowest order. In (2.6) the symbol Vg represents the two-dimensional Laplacian, 
which arises because the vorticity g in (2.7) is independent of z. It follows that the 
term aw/az in (2.6) is a function of ( r ,  8 )  only and hence that w is linear in z throughout 
the geostrophic region. By examining the ageostrophic Ekman layers on z = 0 , l  
(Greenspan 1968) i t  can be shown that w is O ( a )  and that 

aw 
-= -&A[ aZ 
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outside of these layers. Neglecting the term Roc in (2.6), which can be shown to be 
small when Ro << ,?i$ (Page 1983), and defining the parameters 

the vorticity equation becomes 

This equation, together with the continuity equation 

1 a(ru) 1 av 
-- + - - = o  
r ar r at3 

(2.10) 

(2.11) 

and the boundary conditions on (u ,v) ,  is sufficient to determine the velocities 
everywhere in the geostrophic region, which includes the a layer on the cylindrical 
surface. 

It is convenient to introduce a stream function +(r,  8) defmed by 

(2.12) 

(2.13) 

where J is the Jacobian in radial polars and 5 = V; +. The boundary conditions to 
be satisfied by + are 

+(z, e) = -(z, a+ 0 )  = o (2.14) 
ar 

and $-+ - r  sin8 as r - t c o .  
When 6 < 1 it  is clear that the diffusive term tS2V;[ in (2.10) can be neglected 

everywhere outside of a thin boundary layer, of thickness O(S), which is primarily 
against the surface of the cylinder. The vorticity equation can then be written in the 
form 

(2.15) 

where 1 u I is the speed of the flow and s is the distance along a streamline. It follows 
that 5 decays exponentially along streamlines and, since C + O  as r+ 00, that y = 0 
along streamlines originating from infinity. It can also be shown that 5 = 0 along 
closed streamlines, which may form in the wake of the cylinder. 

Assuming, initially, that the boundary layer is attached to the cylinder, then the 
appropriate stream function for the flow in the exterior, outside of the I$ layers, is 

+e = - ( r - c )  r sine, (2.16) 

where the subscript identifies the exterior flow. The resultant tangential velocity 
against the surface of the cylinder can be calculated from (2.16) to be 

- (Z,O)  W e  = -2 sine, (2.17) 

so that clearly the second condition in (2.14) is not satisfied by the exterior flow. This 

ar 
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velocity discontinuity is accommodated by a boundary layer of scale thickness 
(Barcilon 1970; Walker & Stewartson 1972), known as an & layer, in which the 
diffusive term in (2.13) becomes important. 

layer a new set of scaled coordinates can be introduced, defined To resolve the 

(2.18) 

where attention from this point is to be restricted to the upper half of the cylinder 
with 0 < s < II (or 0 < 6’ < IC). It might be noted that asymmetric effects for this 
configuration are discussed by Merkine & Solan (1979), but in the formal limit 6+0 
these may be neglected. In  terms of these new quantities, the vorticity, to lowest 
order, is 

(2.19) 

and the vorticity equation (2.13) can be integrated with respect to F, once higher-order 
terms have been neglected, to give 

(2.20) 

In this equation Ve is the tangential velocity at the outer edge of the boundary layer, 
which for fully attached flow is f i e  = sins from (2.17). The momentum equation 
(2.20) and the continuity equation 

(2.21) 

are sufficient to determine the flow in the boundary layer, subject to the boundary 
conditions = V = 0 on ? = 0, V+Ve as f+ co, and the initial condition V = 0 at s = 0. 

In  the particular case where A = 0, an exact solution to (2.20) can be obtained, 
namely 

(2.22) 

showing that the boundary layer for Ro 4 ,@ is fully attached with a constant 
displacement thickness. However, for A > 0 the equation (2.20) is parabolic and must 
be integrated numerically as, for example, in Crissali & Walker (1976). This equation 
is also equivalent to each of the & layer equations studied by Page (1982, 1983), who 
concluded that (2.20) is very similar in character to the classical boundary-layer 
equation in a non-rotating fluid. In  particular, for sufficiently large values of A ,  
boundary-layer separation and wake formation can be expected to occur. 

At this point an analogy can be drawn with the magnetohydrodynamic problem 
of the two-dimensional flow of an electrically conducting viscous fluid past a circular 
cylinder in the presence of a magnetic field normal to the cylinder wall (Leibovich 
1967a; Buckmaster 1969). Introducing the parameter N = Z/2A, similar to that 
introduced by Walker & Stewartson (1972), (2.20) can be written as 

V = V,[l -exp ( - f ) ] ,  

a6 av - dv, a2v v -+u - = we-+N(v, - V )  + N-. 
as a? ds a? (2.23) 

The parameter N used here corresponds to the parameter Jf defined in Leibovich 
(1967a), to N L  used in Buckmaster (1969), to iNused in Walker & Stewartson (1972, 
1974) and Crissali & Walker (1976), and to N used in Buckmaster (1971). The limit 
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FIGURE 1. Displacement thickness 6* of the @ layer around the cylinder 
for (a) N = 00 ; (b)  10; ( c )  5 ;  (d) $; (e) 4; (f) 2. 
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N +  co corresponds to the limiting case h = 0 and the solution (2.22), with nonlinear 
effects increasing as N is decreased. 

In the following sections the flow in the boundary layer on the cylinder will be 
examined over three important parameter ranges. Since most of the previous work 
on this problem has been in the magnetohydrodynamic context, the parameter N will 
be used in these sections rather than A, which is more popular in the context of a 
rotating fluid. This will enable the results of this paper to be compared directly with 
those of Leibovich (1967a) and Buckmaster (1971). The parameter h will be 
reintroduced in $6, where the results of $93-5 will be summarized. 

3. The case N 2 2 

For large values of N the leading-order solution to (2.23) is given by (2.20), and 
therefore the boundary layer on the cylinder induces only a small uniform displacement 
effect on the exterior flow, effectively increasing the radius of the cylinder by an 
amount 6. As N is decreased, the inertial effects become more important in the 
boundary layer, and these tend to reduce the displacement thickness on the 
upstream side of the cylinder, and increase the displacement thickness on the 
downstream side, where the flow decelerates. This feature was noted by Barcilon 
(1970), who used multiple-scale analysis to determine the leading-order correction to 
the displacement thickness 6* due to inertial effects. A more general version of 
Barcilon's result can be derived from equation (2.23) for N % 1, giving 

dfi 
ds 

s* = 1 --iN-l e + O ( N - 2 ) ,  

so that 6* x 1 -iN-l cos s in this case. To examine the variation of 6* around the 
cylinder for various values of N, the solution to (2.23) with Pe = sins was calculated 
numerically, and the results are plotted on figure 1. The numerical method used was 
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based on the ‘box method’ of Keller & Cebeci (1971) using a scaling in the f-direction, 
similar to that described in Crissali & Walker (1976). The plot of S* for N = 10 is in 
close agreement with the approximate expression given by (3.1), but as N is decreased 
further the boundary-layer thickening becomes very significant near s = x .  In fact, 
the analysis to follow indicates that S* becomes unbounded as S + R  once N < 3, 
confirming the presence of a singularity at  the rear stagnation point originally 
recognized by Leibovich (1967 a). In contrast, the forward stagnation point remains 
regular for all N ,  and it can be shown that as N+O the flow in this region is similar 
to the corresponding flow in a non-rotating fluid, but with the scale thickness of the 
boundary layer decreasing proportionally to Ni. 

The most important feature of the boundary-layer flow is the development of the 
singularity at the rear stagnation point, which becomes apparent in the numerical 
solutions to (2.23) for N < 3. The flow in the vicinity of this point has been studied 
by Leibovich (1967a), who considered a linear external flow which corresponds to 
f i e  = R - s in the present coordinates. The features of this flow should be very similar 
to those for f i e  = sins, since sins N R - s  as s + x .  Leibovich (1967a) assumed that a 
similarity solution of (2.23) can be found with U = (n-s)f’(F), and showed thatfmust 
then satisfy an equation equivalent to 

Nf”-ff”+(f’- 1 )  ( f ’ - N +  1 )  = 0, (3.2) 

with boundary conditionsf(0) =f’(O) = 0 andf’(m) = 1. Leibovich (19673) showed 
that there exists a unique solution to this problem for N 2 2, and therefore the 
assumed form of the solution appears to be suitable for this parameter range. 
Leibovich (1967a) also noted that no such solution can exist for N < 2, although a 
solution of (3.2) satisfyingf’(co) = N-1 does exist; this solution will be discussed 
further in $4. 

One feature of the solutions of (3.2) for 2 < N < 00 is their algebraic decay at the 
outer edge of the boundary layer since 

f’ - 1 + const PN (3.3) 

f- r+aP-N+b (3.4) 

(Leibovich 1967a). Integrating once implies that 

where a, b are constants which can, in principle, be determined from the numerical 
solution of (3.2). When N = 2 the second term in (3.4) is of the same magnitude as 
the leading term, and the asymptotic expansion breaks down. In this case it can be 

(3.5) 
shown that 

where c is a constant, so that the velocity tends to the exterior flow very slowly in 
f .  This indicates that the boundary layer has become very thick in the vicinity of 
the rear stagnation point, and signals the breakdown of this particular similarity 
solution for N < 2. The displacement thickness S* = lim,=,m (F-f) can be calculated 
from the expansion (3.4), and for N > 3 it is clear that 8* = - 3. However, once N < 3 
the displacement thickness becomes infinite at the rear stagnation point, as was 
indicated in the numerical results shown in figure 1. 

The asymptotic behaviour off for large values of F leads to some difficulties with 
the matching of the boundary-layer flow into the exterior flow, particularly when 
N < 3. From (3 .3) f”  is proportional to F 1 - N ,  and therefore the vorticity at the outer 
edge of the boundary layer is proportional to ( x  - s) ( r  - l ) l -N and of order SN-2.  For 

1 
lnF+c’ 

f’ N I-- 
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N > 2 this vorticity advected out of the boundary layer will only slightly perturb 
the 0(1) exterior flow, YO the streamlines in this region will be given by (2.16) to 
leading order. The second-order correction to this flow will have non-zero vorticity 
and satisfy the equation 

from (2.15). This equation can be solved in the vicinity of the rear stagnation point 
by changing coordinates from ( r ,  8) to ( r ,  $,), so that 

and hence 

for 0 4 1. Here 2 is a function of +e which is determined by matching onto the 
boundary layer at r = 1. To this end note that $, - S(R-s)  7 as r + l ,  and therefore 

Ccc Z ( S ( R - s ) r ) r - N  (3.9) 

at the outer edge of the boundary layer. Since g should be zero on 8 = 0 (or $, = 0), 
we might expect that 2 is approximately linear for small values of its argument, which 
would then imply that 5 is proportional to ( ~ - s ) F - ~ .  Therefore (3.8) matches 
directly onto the vorticity shed by the boundary layer, through the second term in 
(3.3), and also indicates that the vorticity decays exponentially in a wake behind the 
cylinder. This exponential decay, over a distance O(N-'), is similar to that behind 
the flat plate in Page (1983). It is also worth noting that this wake will be confined 
to the region where $, = O(6) since the streamlines outside this region will not have 
entered the boundary layer. Therefore 2 will only be non-zero for $e of order 6, which, 
for finite r ,  implies that the wake is of thickness O(6) in 8. For 8 4 6 the analysis above 
indicates that 

8 ( r  + Z ) N + l  exp (- 7Nr) 
Ca- r (r-Z)N-l (3.10) 

since 2 is linear in $, for $e 4 6. 
For N = 2 the vorticity shed by the boundary layer, through the second term in 

(3.5), is of order (In a)-' in the wake, but once N < 2 i t  can be expected that the wake 
will contain vorticity of order unity at least, albeit in a thin layer. 

4. The case 1 < N < 2 
As was noted in $3, there is no suitable solution of (3.2) satisfyingf'(w) = 1 when 

N < 2, although there is a solution that satisfiesf'(m) = N- 1. A t  first this solution 
might not Seem acceptable, since it would imply that V - ( N -  1)  ( R - s )  at the outer 
edge of the boundary layer, and hence would not match onto the exterior flow 
ge = 71 - s. However, Leibovich (19674 proposed that the boundary-layer flow in this 
parameter regime consists of two parts: an inner viscous layer in which the similarity 
solution above is valid and an outer inviscid layer which provides a transition 
between V = ( N -  1) (n -5) and Ve. This hypothesis was supported by the numerical 
evidence presented in Buckmaster (1971), but when both Leibovich (19674 and 
Buckmaster (1971) attempted to determine the structure of thc outer layer they found 
inconsistencies in their solutions. As a consequence, both authors concluded that no 
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FIGURE 2. Profiles of the scaled @ layer velocities close to the rear stagnation point, for 
N = i, shown between s = 0.95On and 0.995~ at intervals of 0.005~. 

steady-flow solution could be found for the outer layer. One aim of this paper is to 
demonstrate that a steady-flow solution can be found, but that it is not of the simple 
form proposed m the previous studies. 

The lower limit on the parameter range examined in this section is imposed by the 
vanishing of the velocity within the inner layer proposed above, which occurs when 
N = 1. At this same value of N the scaled skin friction 

vanishes at the rear stagnation point (Buckmaster 197 1) which suggests that this 
quantity will be negative for N < 1, and hence that separation will have occurred 
at some s < x. These features are supported by the numerical solutions in Crissali 
& Walker (1976). Buckmaster (1971) also derived a necessary condition for the 
occurrence of separation, based on the classical requirement that (az$/laP) (s, 0) > 0 
at the point where the skin friction vanishes, which requires that 

d$e 
-+N ds < 0. 

This is satisfied at  the rear stagnation point for N < 1, so it appears likely that 
N < 1 is both a necessary and sufficient condition for boundary-layer separation. 
In addition, (4.1) implies that separation, in the usual sense, cannot occur when 
1 < N < 2 .  

To reexamine Leibovich’s (1967 a) hypothesis that the boundary-layer flow splits 
into two layers when 1 < N < 2, (2.23) was integrated numerically with ge = sin s for 
various values of N. As was noted in Crissali t Walker (1976), there is a rapid 
thickening of the boundary layer near the rear stagnation point, and consequently 
a special scaling, to be described later in this section, was used to help resolve this 
feature. The results of these calculations are presented in figure 2, where $/sins is 
plotted as a function of 7 for ten values of s near s = x. This figure shows the 
development of the inner layer, with $/sins x N -  1 = at its outer edge, and a 
rapidly thickening outer layer which provides a smooth transition between 
@/sins = N -  1 and @/sin s = 1. These numerical solutions also indicate that the 
displacement thickness of the boundary-layer flow for N = f increases slightly faster 
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than O(n-s)-l as s+n, as was noted by Buckmaster (1971). However, the most 
important feature of these results is that they present a consistent steady solution to 
(2.23) for a value of N at which both Leibovich ( 1 9 6 7 ~ )  and Buckmaster (1971) 
concluded that no steady solution could exist. Before reexamining their solutions for 
the outer flow, a few important features of the inner layer need to be outlined. 

Leibovich ( 1 9 6 7 ~ )  concluded that in the inner Lviscous’ layer the similarity 
solution v = (x-s)f’(F), 

wheref satisfies (3.2), is appropriate and that V - t  (x - 8 )  ( N -  1)  at the outer edge of 
this layer. In fact, the solutions of (3.2) for 1 < N < 2 are closely related to those 
for N > 2; if f(f) is a solution of (3.2) with ~ ’ ( o o )  = N -  1 for 1 < N < 2 and T(F) is 
a solution withf’(a,) = 1 for 20 = N / ( N -  1) then 

N f(r) = 3 Ar, = ( N -  l)f(?). 

This one-to-one relationship means that the properties of f(r) for 1 < N < 2 can be 
obtained by applying a simple transformation to the properties off(r) for N > 2. In  
particular, (3.3) implies that 

f’- ( N -  1)+d7(N-2)/(N-1) for ? % 1 ,  (4.3) 

where d is a constant, which can then be used to match the inner layer onto the outer 
‘inviscid’ layer. Another important feature of the inner layer is that the stream 
function +, defined by 

(4.4) 
- a$ - a$ u =  -- v = -  

as ar ’ 
and related to that defined in (2.12) through $ = -$-/28, is given by 3 = (x-s ) f (F) .  
As a result 3 is O ( x - s )  in this layer as s - t x ,  a property that will later be used to 
identify it in some of the numerical solutions. 

Using (4.3) the sizes of each term in (3.2) for ? $  1 can be compared and it is 
apparent that the viscous term Nf”’ becomes less important at  the outer edge of the 
inner layer. Therefore, it is reasonable to expect that the flow beyond this region can 
be described by an inviscid version of equation (2.23), in which the term Na2tT/ar2 
is omitted. namelv 

where U, V have been used to identify the outer flow velocities. Here the external 
flow is assumed to be = n--9, as in $3. Leibovich (19674 sought a solution of (4.5) 
of the form v = (x -9) FL(F) and correctly surmised that no such solution can provide 
the necessary transition between FL = N -  1 at the inner edge and FL = 1 against 
the external flow. As a result he concluded that the flow in this outer layer must be 
unsteady, and he presented an analysis based on Proudman & Johnson (1962) in 
support of this conclusion. Buckmaster (1971) reexamined this problem and, on the 
basis of numerical evidence, sought a more general solution of (4.5) of the form 
V =  ( x - s )  FB(F(x-sP) for aome constant a > 0.  One disturbing feature of this 
solution is the indeterminacy of both a and a constant scaling factor for F ;  
Buckmaster, quite correctly, deduces that these constants would be determined by 
the upstream flow, but makes no attempt to demonstrate that two free constants are 
sufficient to match onto the numerical solutions. Apart from this difficulty, the 
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Buckmaster solution does give qualitative agreement with the numerical results, 
provided a > 1. However, when higher-order terms are examined a contradiction is 
reached, and Buckmaster ultimately concludes that the flow must be unsteady. It 
is relevant to note that Boyer & Davies (1982) saw no evidence of unsteady flow in 
their experiments within this parameter regime; in fact they did not observe unsteady 
flow until N was significantly smaller than one, and the boundary layers had already 
separated from the cylinder. 

In this study a more general solution to (4.5) is sought using a technique similar 
to that used in Stewartson & Simpson (1982) and Brown & Simpson (1982), namely 
to replace the coordinate ? with a stream-function coordinate 3 defined using (4.4). 
Equation (4.5) in (s, $)-coordinates is therefore 

- a 7  - d c  
as ds 

v-= V , - + N ( K - V ) ,  

and for 
appear explicitly in (4.6), the equation can be integrated to give 

= n - s we seek a solution of the form V = ( A  - 4) F(s,  3). Since $ does not 

(1 - F) I F + 1 - N I'-N(n - s)2-N = 9( $), (4.7) 

where 9 is an unknown function of 3 which can only be determined from the 
numerical solutions for the flow upstream of the stagnation point. Once 9 is known, 
the function P(s, $), and hence 7, can be calculated from (4.7) for any value of s < n. 
The vertical velocity is then determined through the continuity equation, giving 

Buckmaster's (1971) solution of the form V =  (z-s) FB(?(x-s)a) assumes, in effect, 
that 9 is a power of 3, namely 

9($) = a 1 $(N-2) / (a -1 ) ,  (4.9) 

where a and a are the undetermined constants used in his paper. The relationship 
(4.9) is not immediately obvious, but it can be established from his equation (3.5), 
and therefore the validity of his solution depends on whether the numerical results 
show 9 to be of this simple form. 

The numerical solutions of (2.23) for this parameter regime were calculated in a 
similar manner to those for N 2 2, but with one important difference. Previous 
studies (Buckmaster 1971 ; Crissali & Walker 1976) have noted that the thickness of 
the boundary layer increases rapidly as s+n when 1 < N < 2, and therefore, to 
resolve this feature properly, a scaled coordinate was introduced in the ? direction. 
Since the form of (4.7) indicates that 3 remains finite in the outer layer as s+x,  this 
new coordinate should ideally follow the streamlines of the flow. For this reason the 
coordinate R = F cos as was chosen because Ris  roughly proportional to 3 in the most 
of the flow, in particular at the outer edge of the boundary layer near s = A where 
$ oc F(7c-s). Since s = x is a singularity in this transformation, the numerical results 
were terminated before this point, typically at s = 0.995~.  To ensure that the inner 
layer, in which 3 is O ( X - ~ ) ,  was resolved properly, a very small E-spacing was used 
near the wall. 

= (n-s) so the 
quantity 

B = (n-s-V)I 7-(N-l)(n-s)p-N, (4.10) 

The relationship (4.7) is strictly only valid for the external flow 



216 

- l n 7  40 

t 

M .  A .  Page 

I 

In 3 - 10 1 

- I  0 1 2 3 4 

FIGURE 3. Plots of --In 9, where 9 is defined in (4.7), as a function of In obtained from the 
numerical solution for (a) N = 4 (-) ; (a) (- - - - - - - -). 

obtained from the left-hand side of (4.7), will not be independent of s for the flow near 
the rear stagnation point of the cylinder. However, since sin s - R -8 near s = z the 
values of Y should tend smoothly to a non-trivial limiting function 9($) as s+z, and 
this feature is confirmed by the numerical solutions. This limiting function is plotted 
in figure 3 for two different values of N ,  using a logarithmic scale on both ordinates 
to facilitate comparison with (4.9). If that equation were valid then l n 9  would be 
linear in ln3 ,  but clearly this is not the case, so Buckmaster’s assumed form of 
solution is not appropriate. Figure 3 also indicates that 9 decays rapidly in 3 as 
$+ co ; in fact plots of In 9 against 3 show that this decay is at least exponential 
in 3, which is much more satisfactory than the algebraic decay implied by (4.9). The 
apparent singularity on the N = 5 curve near 3 = 1 does not actually represent any 
singularity in the flow, but rather it corresponds to the value of 3 where F = N -  1 
and the left-hand side of (4.7) is infinite. A similar singularity is present for N = $, 
but it is beyond the range of 3 plotted on figure 3. 

When 3 is O(z-s), viscous effects become important in the boundary layer, and 
(4.5) is no longer accurate, so in this region the inner layer must be matched onto 
the outer layer given by 9. The matching condition between these layers is not 
F = N -  1, as supposed earlier, since figure 3 indicates that this value is attained a t  
a non-zero value of 3. In  fact, the outer layer extends into the region where F < N- 1 
and matches onto the second term in (4.3), which implies that 

f ’ - N +  1 d $ - N ) I ( l - - N )  (4.11) 

for ? % 1. From the solution in the inner layer it follows that $ = (N- 1)  (R -8) 7 in 
this region, and therefore (4.11) implies that 

(4.12) 

for - 3 4 1 .  Inserting this result into (4.7) implies that 9 is proportional to PvN as 
$ + O ,  and therefore the matching between the layers depends on whether this is 
confirmed by the numerical solutions. To examine this, the quantity ($N-zY)l/(l-N) 
is plotted in figure 4 for N = f and several values of s near s = R (the power 1/(1- N) 
is introduced to remove the singularity in $N-29 when F = N -  1). From this figure 
it is clear that $N-29 is approaching a limiting function as s+ R and that this function 
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FIGURE 4. Plots of (pN-V)l’(l-N) as a function of 3 near the inner edge of the boundary layer 
between s = 0.950~ and 0 .995~ at intervals of 0.005~. 

is finite and non-zero at 3 = 0, confirming that 9 a p-N as $ + O .  It is also 
apparent that the inner region is becoming thinner as S + R ,  as would be expected. 

As N is decreased towards unity numerical inaccuracies become evident in the 
values of 9 as s+a;  for example the values of Y may be close for 8 between 0 . 9 ~  
and 0.95x, but there can be significant departures from this trend once 5 = 0 . 9 9 ~ .  
Consistent solutions can usually be calculated by reducing the size of the steplength 
in s, but these also break down closer to s = R. The reason for the appearance of these 
errors is associated with the transition region where F x N -  1, since (4.7) implies that 

F -  N +  1 a (R - s)(Z--N)/(N-l)  (4.13) 

along lines where 3, and hence z, is constant. As N +  1 the power of R-s  in (4.13) 
becomes large, and the variations of F with s cannot be accurately resolved using 
a second-order numerical scheme with constant grid spacing in s. The solutions are 
improved if a stretched coordinate, such as S = In (R-s), is used near s = n, but 
there are still difficulties as N +  1 ,  since the steplength in S must be reduced to order 
N -  1. In addition to this problem, the boundary layer thickens more rapidly near 
the rear stagnation point once N is close to unity. The numerical solutions suggest 
that most of this thickening is associated with the broadening of the ‘ plateau ’ region 
where F x N -  1, as N + l .  For example, near the value 3, where F = N-1, (4.7) 

FU(1-N) a (~-s)(z-N)/(l-N) ( F - N +  I ) ,  (4.14) 
implies that 

and, assuming 2F1/(1-N) is regular at 3 = go, then 
- 
1c/- Po (R - s ) (Z-N) l ( l -N)  ( F - N +  1). (4.15) 

Therefore the thickness in 3 of the region where I F - N +  1 I < 8 will increase in 
proportion to ( x  - as s +a, and this increases rapidly when N -  1 is small. 
This thickening is confirmed qualitatively in figure 5, where F is plotted as a function 
of R for N = y. The exact power of ?c - s a t  which the boundary layer thickens is not 
reproduced in these results, but this is thought to be due to the difficulties with 
resolution described above. 

The rapid thickening of the F x N -  1 ‘plateau’ region, apparent in figure 5,  has 
a significant displacement effect on the outer layer which is loosely analogous to a 
separating boundary layer. In this sense Leibovich’s (1967a) description of the flow 
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FIGURE 5. Profiles of the scaled Id layer velocities t7/ge close to the rear stagnation point, for N = !f, 
with a stretched normal coordinate = i cos+s. The values are given at regular intervals of 0.011~ 
between s = 0.Wn and 0 .99~ ,  with an additional plot at  8 = 0.995~. 

in this regime as undergoing ‘separation without reversed flow’ seems to be 
appropriate. The flow in the plateau region is, to a close approximation, potential 
stagnation-point flow since the vorticity in this region is only of order 8(2-N)/(N-1),  
whereas it is O(S1) in both the inner and outer layers. As N-+ 1 the size of this region 
increases, and the velocity scale N- 1 decreases until it  becomes a significant stagnant 
region when N = 1 ,  rather like a separation bubble. 

At the outer edge of the boundary layer, where 3 % 1,  (4.7) implies that 

F-1 K ( 7 ~ - ~ ) ~ - ~ 4 t ( $ ) ,  (4.16) 

and numerical evidence suggests that 4t decays at least exponentially in 3. 
Differentiating (4.16) with respect to V ,  

and using $ x (n - s) 7 gives that 

(4.17) 

(4.18) 

which matches directly onto (3.8). This matching also implies that 5 is O(S1) in the 
wake region, but since 9-+0 as @+ 00 this region is only of thickness O(6) in +, or 
O(S) in 8 for finite values of r .  

The displacement thickness deduced from (4.15), which is proportional to 
( ~ - a ) l / ( l - ~ ) ,  increases rapidly near s = x once N is close to unity. Therefore the 
thickness of the wake region will increase as N +  1, so that once N = 1 it is large 
enough to modify the exterior flow (2.16). Beyond this point boundary-layer 
separation might be expected and a large stagnant bubble should form behind the 
cylinder from the remnants of the ‘plateau’ region. 
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5. The case N < 1 
Once N < 1 the condition (4.1) is satisfied at a position upstream of the rear 

stagnation point, and the possibility of flow separation must be entertained. In  fact, 
the trends in the flow as N +  1, outlined in $4, do seem to indicate that the boundary 
layer will separate for all N < 1. In  particular, as N approaches unity from above 
the outer inviscid layer effectively separates from the wall, although it does remain 
within the boundary layer, leaving an inviscid irrotational flow beneath it. This 
irrotational region becomes stagnant a t  N = 1, similar to a separation bubble, 
although it remains within the boundary layer in the sense that 3 is O(6) in this region. 

When the boundary layer separates from the wall it might be expected that the 
free shear layers leaving from the wall, on both sides of the cylinder, would enclose 
a finite region of recirculating flow. However, in a rotating fluid the vorticity in a closed 
region will always decay to zero, in accordance with (2.15), and therefore the flow 
within these regions will always satisfy Vz$ = 0. It follows, since $ is constant on 
the bounding streamlines, that $ must be constant within the closed region and 
therefore the leading-order flow within the separation bubble is stagnant. In a 
non-rotating fluid Smith (1977) shows that the position of the separated region can 
be described by Kirchhoff free-streamline theory, in which the velocity along the free 
streamlines is constant. An analogous procedure can be followed for a rotating fluid, 
except that velocities along the free Streamlines will be linear in the streamwise 
direction, and the two free shear layers will meet to form a closed separated region 
(Page 1985). An important feature of these free E! layers is that there is no I8 layer 
embedded within them, and therefore, like the wake in Page (1983), they are of a 
different character to the free layers forced by a velocity discontinuity in 
Stewartson (1957). 

As N is decreased from unity towards zero the size of the separated bubble becomes 
infinite, since the length of the free shear layers is proportional to N-l ,  and 
corresponds to that described in Smith (1977) as N+O. This correspondence between 
the flow for N < 1 and that in a non-rotating fluid was also noted in Page (1983). 

In  an experimental situation the flow described above will not usually be attained 
owing to the development of instabilities in the free shear layers (which will contain 
an inflection point in the velocity profiles). These instabilities lead to a periodic 
unsteadiness in the flow, as observed by Boyer (1970) and Boyer & Davies (1982) 
for some values of N < 1, with vortices being shed from the cylinder into the wake. 
Similar instabilities were observed in free ,@ layers by Hide & Titman (1967), 
although in their case the free shear layer was not attached to an obstacle, but was 
forced by a velocity discontinuity on the lid of their container. This instability is 
described in detail in Busse (1968), Seigmann (1974), Hashimoto (1976) and, more 
recently, in Niino & Misawa (1984). 

6. Conclusion 
The analysis in the preceding sections shows the development of boundary -layer 

separation for the flow past a circular cylinder in a rotating frame as the Rossby 
number is increased, at  a fixed Ekman number. This is achieved by using several 
results known from an analogous problem in magnetohydrodynamics and then 
introducing a new form of solution for the boundary-layer flow in the important 
parameter regime that leads up to separation. The form of this solution gives an 
indication to the nature of the flow once separation has occurred. 
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To aid in the interpretation of the results of 553-5 in a rotating-fluid context, the 
principal features will be outlined for the various parameter regimes of h = 1/2N.  

(a )  0 < h < :1 
The boundary-layer flow is fully attached and can be described by a similarity 

solution in the neighbourhood of the rear stagnation point. There is a weak wake 
behind the cylinder in which vorticity shed by the boundary decays exponentially. 
Once A 2 il the displacement thickness at the rear stagnation point becomes infinite. 

( b )  a1 < A < 41 
The boundary-layer flow in this regime splits into two layers near the rear 

stagnation point. The inner ‘viscous ’ layer is governed by a similarity solution related 
to that in (a), while the outer ‘inviscid’ layer is dominated by the advection of 
boundary-layer vorticity from upstream of the stagnation point. The inner layer is 
characterized by streamfunction values of order BS, where B is the angle from the rear 
stagnation point and 6 is the scale thickness of the boundary layer, while the stream 
function is O(6) in the outer layer. For values of h near 42 these two layers are separated 
by a region of effectively irrotational flow which becomes larger as A+$. A wake 
extends behind the cylinder, transporting the vorticity shed from the outer layer. 

(c) A > ;1 
The boundary layer separates from the cylinder before the rear stagnation point 

is reached, and a bubble of stagnant fluid forms behind the cylinder. This bubble is 
bounded by free a layers, and it  distorts the flow around the cylinder significantly. 
As A is increased, this bubble grows proportionately until, as A+ 00, the flow is 
identical with the equivalent two-dimensional flow in a non-rotating fluid. 
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